目前,自动驾驶已经成为了未来驾驶技术的主要研发方向,国内外众多AI团队针对未来出行方式的变革需求,正全面推动自动驾驶技术的落地,其中,也包括了浪潮AI。 近日,浪潮信息AI团队在全球权威的自动驾驶nuScenes竞赛的最新一期评测中斩获纯视觉3D目标检测任务(nuScenes Detection task)第一名,并将关键性指标nuScenes Detection Score(NDS)提高到62.4%
目前,自动驾驶已被众多车企与AI 领先公司视为未来出行方式变革最重要的支撑性技术,而目标检测作为自动驾驶技术的核心模块,其算法的精度和稳定性正在众多AI研究团队的推动下,不断创下新高。nuScenes数据集是目前自动驾驶领域中最流行的公开数据集之一,数据采集自波士顿和新加坡的实际自动驾驶场景,是第一个集成摄像头、激光雷达和毫米波雷达等多种传感器,实现360度全传感器覆盖的数据集。nuScenes数据集提供了二维、三维物体标注、点云分割、高精地图等丰富的标注信息,包含1000个场景,拥有140万帧图像、39万帧激光雷达点云数据、23个物体类别、140万个三维标注框,其数据标注量比KITTI数据集高出7倍以上。 此次浪潮AI团队参与的纯视觉3D目标检测任务是竞争最激烈的赛道,吸引了百度、鉴智机器人、纵目科技、卡内基梅隆大学、加利福尼亚大学伯克利分校、MIT、清华大学、香港科技大学、上海交通大学等全球各地的顶尖AI团队。 纯视觉3D目标检测任务,就是在不使用激光雷达、毫米波雷达等额外的传感器信息条件下,仅使用6个摄像头完成车外360度环视视野的3D目标检测,不仅需要检测周围环境中所有的车、行人、障碍物、交通标志、指示灯等若干类对象,还要精确感知到他们在真实物理世界中的位置、大小、方向、速度等信息。该项任务的主要难点是通过2D图像难以准确的获取目标的真实深度和速度,当提取的深度信息不准确时,一切的三维感知任务都会变得异常困难;而当提取的速度信息不准确时,则可能会对后续的决策规划任务产生致命性的影响。
浪潮AI团队创新开发了基于多相机的时空融合模型架构(Inspur_DABNet4D),在多视角视觉输入统一转换到BEV(Bird Eye View)特征空间这一技术框架的基础上,引入了数据样本增强、深度增强网络、时空融合网络、预训练权重等,得到了更鲁棒更精确的BEV特征,大幅地优化了目标物体监测速度和位移方向预测。 凭借领先的算法能力,浪潮AI得以在nuScenes竞赛的3D目标检测任务榜单上摘得桂冠,研发团队成功将关键性指标NDS提升到62.4%,对比年初榜单显示的最佳成绩47%要更高一层,从侧面凸显出浪潮AI不断进取、勇于突破的创新精神。 ![]() |